Scene Graph Generation for Object Localization in
Smart Homes from User Commands

Md Abdur Rahman Fahad, Md Asif Tanvir
Department of Computer Science
Missouri State University
Springfield, Missouri, USA
{mf8494s,mt5864s }@missouristate.edu

Abstract—With the advancement of smart technologies, many
homes now come with integrated smart systems like voice
assistants and smart cameras. In this project, we want to use
these systems of smart homes and build a solution that would
enable users to find objects within their homes very easily by just
giving regular human commands. We have integrated natural
language processing (NLP) with the scene graph generation
technique to build a system that will take the user’s command
and locate the objects from a camera feed from a complex
home environment. This approach allows for accurate object
localization and improves smart home assistance, particularly
for visually impaired individuals.

Index Terms—Object Localization, Scene Graphs, Iterative
refinement, Detectron2, DistiBERT

I. INTRODUCTION

In today’s time, many of the homes come with a smart
setting, like having a camera or voice assistant. Day by day,
people are also getting accustomed to using voice command-
based assistants for their regular tasks. But some tasks are
difficult to accomplish even for a smart home. One common
task would be the ability to find objects in a cluttered or
complex environment, such as asking,“Where is the remote?”.
Understanding the scene and localizing objects based on user
queries is crucial for enhancing the smart home experience.

For solving this issue, one crucial model is understanding
the regular objects and their relation with their neighboring
objects. In this case, scene graphs can be a really useful
method. Scene graphs provide a relationship between objects
from a scene. In the paper [1], the authors have provided a
method for generating scene graphs using iterative message
passing. In their proposed method, it is possible to generate
scene graphs that are visually grounded from images. Their
model employs a novel approach that iteratively refines its
predictions by exchanging contextual information along the
structure of a scene graph. The generated scene graphs should
look like figure 1.

Another work that is more recent and works on a similar
domain is the model stated by Khandewal et al. [3]. Their
work is a refinement on the existing work by removing the
problem of fixed factorization. They use a transformer-based
method to generate the scene graphs. On the back end, they
use a message-passing system within the Markov Resource
Field. Another work that is also important in the field of
generating scene graphs is the work by Wu et al. ?? called

has ——arm

has ——arml
/ has ——hand — holding — racket
/w'earing —shirt

—

man ;
wearing — hat
on

on
wearing —pant =

Fig. 1: Example of Scene Graph

Detectron2. This is an object detection model that can detect
multiple objects from an image. This object detection method
can be used in generating scene graphs.

While scene graph generation is one aspect of addressing
this problem, another aspect would be understanding the
context from the user’s commands. Generally, to understand
the context from a sentence, we need some kind of natural lan-
guage processing model. Sanh et al. [5] proposed a lightweight
model based on BERT, DistilBERT. BERT is a popular natural
language processing model. In DistilBERT, a smaller language
model is pre-trained on a distilled dataset. The architecture is
the same as BERT. But the number of layers is reduced by
a factor of 2. Similar to BERT, DistilBERT uses bidirectional
attention, meaning it considers both preceding and succeeding
words to determine context.

In this project, we aim to develop a model capable of
generating scene graphs from images to help users locate
objects within their home environment based on their query.
We have divided the house into multiple rooms, and each of
our test images represents different rooms. For the scope of
this project, we will not consider voice commands, only text
inputs. From this input sequence, we try to identify the context
of the sentence. We have used DistilBERT [5] for generating
context from the user’s queries. Then we will need to detect the
objects from each room and generate scene graphs for those
detected objects to identify the localizations. For this, we will
base our approach on the paper, Scene Graph Generation by
Iterative Message Passing [3], leveraging the Visual Genome
dataset [2]. The generated scene graph will represent objects,
attributes, and relationships, enabling the system to identify
the location of queried objects. This has direct implications for

smart home assistance, object tracking, and enhancing overall
user interaction. This project can be useful to visually impaired
people to find objects in their homes.

The remainder of the paper is organized as follows: Section
IT describes the approach we have taken for implementing
this whole process in detail. We also describe the inherent
architecture and their training procedures in this section. In
section III we talk about the datasets and their properties. In
section IV, we talk about different evaluation metrics. Different
real-world examples and scenarios are discussed in the section
V. Finally, section VI contains the concluding remarks for our
project.

II. APPROACH

Our approach has three main modules, which are:

o Context Detection module
o Object Detection module
o Scene Graph Generation module

The three modules are described in different sections below.

A. Context Detection Module

This module receives user commands or sentences in text
format and ggenerates a context that refers to one of the 150
objects in the Visual Genome dataset [2].

1) Data Preparation: We have processed object data from
the Visual Genome dataset to generate a synthetic dataset
for sequence classification. First of all we have collected
the synonyms of all the classes of Visual Genome objects
and then we have paired them with predefined templates to
generate diverse sequences of tokens. The resulting dataset
has a size of 47296, which consists of sentences paired with
their corresponding object labels (context classes). Then we
shuffled the dataset which was used as input for sequence
classification models trained to predict object classes from
contextual queries.

i i 1 i
i| Fredvmwerayer D 3 i| Predm(w;Layer lj !

1
} ! i
3 | Layer 12 i |Transformer Layer 6 i
| 1 i i T i
coe 12x | 0 cee 6x|1

2 | i 4 i

E | Transformer Layer 2 U E
i T |

i i
! |Transhm|er Layer 2 U E
i 1 i

% | Transformer Layer 1 E | Transformer Layer 1 | E

Tﬁwf Hj,w“ Iﬁwv § Tauery [Value TKey

i [EE=EEESER R auE = I

i
i
i
i
H TR
Y Head = sormax(Ky | 1|
' fd, i |
1 i Multi- Head
N EC N Y i Attention(MHA
! i
H i
i
i
.

i i
El Embedding Layer D i

DistilBERT

Tokenized Text

Fig. 2: DistilBERT model architecture

2) Training: We have use fine-tuning on DistilBERT model
for our sequence classification task using our data prepared
from the Visual Genome dataset. First of all the data is tok-
enized using the DistilBERT tokenizer, padding and truncating
sequences to a maximum length of 128 tokens. Then we
did a label mapping to encode context labels as integers for
classification. Then we processed the tokenized dataset into
PyTorch tensors. We fine-tuned a DistilBERT model with a

classification head for multi-class classification. We used the
Hugging Face Trainer API. Our training ran for 15 epochs,
with a learning rate of 2e-5, training batch size of 256, and
an evaluation batch size of 512, with weight decay set to
0.01. At each epoch, we compute evaluation metrics, such as
loss, to monitor performance and optimize the model. After
fine-tuning the model, we save both the model and tokenizer
for faster inferences in future. Then we created a pipeline to
predict object context from input sentences using the saved
trained model weights. Figure 3 and 4 shows the training loss
and evaluation loss for our training.

We have used Pytorch Library for all our training and in-
ference and We utilized DistilBertForSequenceClassification,
DistilBertTokenizer from transformers library package.

train/loss

0.5
0.45
0.4
0.35
0.3

0.25
train/global_step

500 1k 1.5k 2k 2.5k

Fig. 3: Training Loss for DistilBert

eval/loss

0.4\
0.35
0.3

0.25

train/global_step
>

500 1k 1.5k 2k 2.5k

Fig. 4: Evaluation Loss for DistilBert

B. Object Detection Module

We have used the popular library Detectron2 [4] by Face-
book AI Research for detecting objects from images. Detec-
tron2 uses a pre-trained object detection model which is used
to detect the objects in the image. Each detected object is
represented as a node in the graph. A detailed overview of
Detectron2 is provided here.

o Backbone Network (Resnet-101): The backbone ex-
tracts hierarchical feature representations from the input
image. Detectron2 supports various backbones, including
ResNet-101, which is a deep convolutional neural net-
work pre-trained on ImageNet. ResNet-101 consists of

56x56
28x28
14x14
7x7

Cr e .
S g g
~ S B © w o~ o) oy ~N o~ =]

- X ol B N N o il find S = o8

& ~| £ o~ - — In ol ol B= n =

o —» =P TP g >~ P S SR e e N e o ==

c B S % x — — M — — () = — (9] ~| 9

= = | X x X X x B % X X x| &
> — — ™ — — m 9 — m = =4
c o]
ol = <
O

Conv2_x identity Conv3_x identity Conv4_x identity Conv5_x identity

x3 x4 x23 x3

Fig. 5: The architectural view of ResNet-101

101 layers and leverages residual connections to mitigate
vanishing gradient issues, making it effective for training
very deep networks. It is composed of multiple stages,
each containing residual blocks with a combination of
1x1, 3x3, and 1x1 convolutions. As we go deep into
the network, the number of features increases and the
dimension of the image decreases. The final layer of
the Resnet is a fully connected layer which assigns the
probability for each output classes.

o Feature Pyramid Network (FPN): Built on top of the
backbone, the FPN enhances multi-scale feature extrac-
tion by constructing a pyramid of feature maps with
varying resolutions. This allows the model to effectively
detect objects of different sizes, making it particularly
useful for handling diverse datasets.

« Region Proposal Network (RPN): The RPN generates a
set of candidate object proposals by predicting bounding
boxes that are likely to contain objects. These proposals
focus the subsequent stages on regions of interest, signif-
icantly reducing the computational burden.

o Region of Interest (ROI) Heads: The ROI heads refine
the regions proposed by the RPN and perform specific
tasks:

— Bounding Box Regression: Adjusting the coordinates
of bounding boxes for more precise localization.

— Classification: Assigning object categories to the
detected regions.

— Mask Prediction: Producing pixel-level segmentation
masks for instance segmentation tasks.

C. Scene Graph generation Module

We initially proposed the architecture proposed in Scene
Graph Generation by Iterative Message Passing [1]. This
approach uses a deep neural network to first detect objects in
an image and then iteratively pass messages between object
nodes in the graph to refine the predictions of relationships and
attributes. Then we implemented the architecture of Iterative
Scene Graph Generation [3] which is a transformer-based
approach. An overview of the module can be seen in figure 7.
The different components of Scene Graph Generation module
is described here.

Image Encoder
For each image, we have used a deep convolutional net-
work ResNet to obtain an image-level spatial map. A 6-

layer encoder is used to transform input images into position-
aware flattened image feature representation. Each layer has
Multiheaded Self-Attention for capturing long-range depen-
dencies, Feedforward Networks (FFN) with two linear layers
and dropout and Layer Normalization for stable training.

Predictor Decoders
This approach models each of the subject, object, and predicate
predictors using a multi-layer transformer decoder. The t'"
layer of the decoder generates a set of triplet estimates based
on fully connected feed-forward layers, which generate the
scene graphs at that layer. The decorders are divided into three
sets of decoders: subject, object, and relation decoders. Each
set has 6 TransformerDecoderLayer modules. Each layer has
Self-Attention for intra-query relationships, Cross-Attention to
condition on image and prior layer outputs and Feedforward
networks with normalization and dropout layers. 300 queries
are used in model architecture for both objects and relations.
These queries act as placeholders for predicting scene graph
components.

Iterative refinement
Each layer of the transformer decoder takes the output of the
previous layer as input. Predictions are progressively refined
across multiple steps. Attention mechanisms are employed
to integrate information from both the image features and
previous graph estimates

D. Loss Function

The project uses multi-task loss function. For object detec-
tion Detectron? uses these losses:

e Object Classification Loss: Cross-entropy loss for pre-
dicting the correct class labels for the detected objects.

o Bounding Box Regression Loss: Smooth L1 loss for
accurate localization of objects.

o Keypoint Loss: L2 loss for estimating keypoint positions.

For Scene Graph Generation module a joint loss is used.
In the “Iterative Scene Graph Generation” paper, the authors
propose a transformer-based refinement architecture that can
be trained in an end-to-end fashion. To ensure the generation of
a valid scene graph at each refinement step ¢, they introduce a
novel joint loss function applied at every layer of the decoder.
The combined loss L can be expressed as:

L= L'=) (LL+L,+L)
t t

where L (for z € {s,0,p}) denotes the loss applied to the
t-th layer of the decoder for the subject, object, and predicate,
respectively. The model generates a fixed-size set of n triplet
estimates {(ps!, ppt, opt)} at each step ¢, where n exceeds the
number of ground truth relations for a given image.

The loss L is defined as follows:

n

L= Z (7 IOg(pf,ap(,»LC) “Sie T Llui - Lbox(pf,ap(mm Si,b))

i=1

Backbonc Network

Hl6
Wil6

H32

W4 ".\ 8
1

Hﬁ-l -

Region Proposal Network

14

(RPN)
—

.. Box Proposals .~
GO,

'}\ ROI Pooler /’:

t Box Head

B |

Output
Image

1
: Mask Head '
) i

resl
256 channels cach |

[
Feature Pyramid Network (FPN) ™~) i

]
. ROl Heads '

Fig. 6: Architecture of Detectron2 Framework

Encoder

N y,
L

’

Decoders .

Fig. 7: Architecture of the Transformer based IterativeSG

E. Preprocessing Layers

Preprocessing involves standard image augmentation tech-

niques such as random cropping, resizing, and normalization. *

These are the steps of the preprocessing:

o Image Resizing: Images are resized to a fixed scale while
maintaining their aspect ratio.

« Normalization: Pixel values are normalized by subtracting
the mean and dividing by the standard deviation of the
dataset (usually based on ImageNet values) to standardize
inputs and improve model convergence.

« Data Augmentation: Basic data augmentation techniques,
such as random cropping, flipping, rotation, and bright-

ness adjustments, are applied to enhance model robust-
ness and improve generalization.

Bounding Box and Mask Resizing: Corresponding anno-
tations, such as bounding boxes and segmentation masks,
are resized and adjusted to match the transformed image
dimensions.

Metadata Handling: Metadata is also preprocessed for
each image, which includes scaling factors, original im-
age sizes, and other relevant information needed for post-
processing and evaluation.

III. DATASET

The Visual Genome dataset [2] is used to train and evaluate
the model. It contains 108,000 images, each annotated with
objects, attributes, and relationships. This rich dataset provides
the necessary information to train models for scene graph
generation and object localization tasks.

e Training Set: Images and annotations from Visual
Genome are used to train the object detection and re-
lationship prediction models.

o Test Set: A subset of images containing 500 images
was used for evaluating the model’s ability to generate
accurate scene graphs and locate queried objects in un-
seen images. We will also test the model in our own
home/office setup using captured images to see how the
model performs.

IV. EVALUATION

To measure the performance of the context detection mod-
ule, we have run evaluations on our separated test data. The
results are shown in Table 1.

Metric Value
Accuracy | 0.8688
Precision | 0.8914

Recall 0.8688
F1 Score | 0.8550

TABLE I: Performance Metrics for the Context Detection

For evaluating the performance of the object detection
module, we have used Average Precision for all object classes.
AP50 refers to Average Precision for IoU (Intersection over
Union) set at 50%. APs, APm, APl refers to the Average
Precision for small, medium, and large objects.

AP APS0
13.309 | 24.861

AP75
12.074

APs
4.137

APm
7.732

API
17.963

TABLE II: Object Detection Bounding Box Average Precision

To measure the performance of scene graphs, we report
results using standard scene graph evaluation metrics, which
are Recall (R@K) and Mean Recall (mR @K). While recall is
class agnostic, mean recall averages the recalls computed for
each predicate category independently. Usually, higher R@K
is indicative of better performance in dominant (head) classes,
whereas higher mR @K suggests better tail class performance.
We have used K = 20, 50, and 100 for evaluation.

We have performed an evaluation on 5000 random images
from the Visual Genome dataset. The results can be seen in
tables II and III. We have also manually evaluated some real-
life test images.

SGMeanRecall@50
0.1425

SGMeanRecall@100
0.1601

SGMeanRecall @20
0.1150

TABLE III: Mean Recall of Scene Graph Evaluation

V. RESULTS

We first attempted to implement the architecture described
in the original paper [1]. However, because this implementa-
tion is six years old and the repository has not been updated,
the required dependencies could no longer be installed. As
a result, we opted to implement a more recent, transformer-
based approach using iterative scene graph generation [3]. We
trained this updated model on the Visual Genome dataset and
generated several sample predictions. Below, we present some
of these predictions 8 and 9. The relations for the images are
shown in tables IV and V In our predictions, if any objects
do not appear in the Visual Genome object list, they are not
detected in the predictions.

We have included three test images from our lab environ-
ment with orange bounding box for the target object. The
results can be seen in figure 10, 11, 12 and the relevant
relations in table VII, VI, VIIL

Fig. 8: Test Image 1 (From Visual Genome Dataset)

Object | Relation (Confidence) | Target
light with (0.71), on (0.12) door
clock with (0.80), on (0.09) door
face with (0.80), on (0.09) clock
clock with (0.82), has (0.08) face
plate with (0.80), on (0.08) door
light with (0.91), on (0.04) door

TABLE IV: Test Image 1 Relations and Confidence scores

Object Relation (Confidence) Target
pillow on (0.48), above (0.18) chair
bear sitting on (0.26), on (0.21) chair
curtain | with (0.31), mounted on (0.23) | window
chair with (0.35), with (0.31) pillow
chair with (0.40), between (0.23) table
chair with (0.42), in front of (0.25) window
table with (0.57), near (0.12) window
table with (0.51), at (0.13) table
window with (0.74), behind (0.10) table

TABLE V: Test Image 2 Relations and Confidence scores

Fig. 11: Demo 2

Fig. 10: Demo 1

Fig. 12: Demo 3

Object | Relation (Confidence) | Target
phone on (0.39), with (0.36) desk

phone | with (0.93), on (0.02) | laptop Object Relation (Confidence) Target
phone | with (0.92), on (0.03) | paper Jacket | hanging from (0.53), with (0.13) | chair
phone | with (0.93), and (0.01) | book jacket | hanging from (0.34), with (0.31) | chair
i . jacket with (0.25), laying on (0.23) chair
TABLE VI: Relations and confidence scores for Demo 1 j’acket hanging from (Oili with (0.24) | chair
jacket with (0.55), at (0.21) desk
Object Relation (Confidence) Target
bottle | on (0.46), sitting on (0.19) | table TABLE VIII: Relations and confidence scores for Demo 3
bottle with (0.41), has (0.18) cap
bottle with (0.76), on (0.11) table
bottle with (0.91), for (0.03) phone
bottle with (0.99), on (0.00) wire

Currently the scope of this project covers text-based query
answering, but this can help visually impaired people or
old people locate items at home using voice commands by
just adding a voice-to-text module. By using the architecture
proposed in Iterative Scene Graph Generation [3] and the

This project aims to solve a real-world problem in smart Visual Genome dataset [2], we have built a system that can
home environments by utilizing scene graph generation to efficiently generate accurate scene graphs and enable object
assist users in locating objects based on natural queries. localization.

TABLE VII: Relations and confidence scores for Demo 2

VI. CONCLUSION

[1]

[2]

[3]

[4]

[5]

REFERENCES

Xu, Danfei, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. “Scene
graph generation by iterative message passing.” In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5410-
5419. 2017.

Krishna, Ranjay, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen et al. “Visual genome: Connecting
language and vision using crowdsourced dense image annotations.”
International journal of computer vision 123 (2017): 32-73.
Khandelwal, Siddhesh, and Leonid Sigal. “Iterative scene graph gener-
ation.” Advances in Neural Information Processing Systems 35 (2022):
24295-24308.

Wu, Yuxin, Alexander Kirillov, Francisco Massa,
‘Wan-Yen Lo, and Ross Girshick. 2019. Detectron2.
https://github.com/facebookresearch/detectron?2.

Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
“DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and
Lighter.” ArXiv, (2019). Accessed December 9, 2024.

