
Generating Pareto-Optimal Counterfactuals through
Evolutionary Multi-Objective Optimization

Md Asif Tanvir
Department of Computer Science

Missouri State University
Springfield, Missouri, USA
mt5864s@missouristate.edu

Md Abdur Rahman Fahad
Department of Computer Science

Missouri State University
Springfield, Missouri, USA
mf8494s@missouristate.edu

Abstract—Counterfactual explanations help us understand ma-
chine learning models. They show how changing inputs can
change predictions. DiCEML is a popular tool for generating
such explanations. It uses methods like random sampling, genetic
algorithms, and KD-trees. In this study, we improved DiCEML by
adding PyMOO. PyMOO is a Python library for solving problems
with multiple goals. This addition makes counterfactual gener-
ation better. It helps balance goals like keeping changes small,
making explanations diverse, and ensuring they are realistic. We
used PyMOO’s algorithms, such as NSGA-II, to achieve this
balance. These algorithms create explanations that work well for
different needs. This paper explains how we combined DiCEML
and PyMOO. It describes the steps we followed and the results
we achieved. Our early results show that this method makes AI
systems clearer. It also helps users understand how predictions
are made. This work aims to make machine learning easier to
use and trust.

Index Terms—Counterfactuals, Multi-Objective Optimization,
DiCEML, PyMOO

I. INTRODUCTION

Machine learning (ML) models are being used more and
more in important areas like healthcare, finance, and smart
homes. It is important to make these models easier to un-
derstand. People often want to know not just what the model
predicts but why it made that prediction. Counterfactual expla-
nations help answer these questions by showing how changing
certain inputs could lead to a different prediction.

DiCE (Diverse Counterfactual Explanations) [1] is a tool
that helps create explanations for many existing machine
learning models. It aims to make these explanations simple,
varied, and useful. However, the methods DiCE uses now, like
random sampling, genetic algorithms, and KD-trees, are not
very effective when we need to balance several goals at once.
For example, users might want explanations that change inputs
only a little, stay different from each other, and still keep the
predictions accurate.

Our research question is about creating better counterfactual
explanations by combining different tools. These explanations
should balance accuracy, ease of understanding, and prac-
ticality. This can make machine learning models easier to
understand and use.

Our research tries to address this question by using multi-
objective optimization. This approach creates diverse explana-
tions that are all equally good in different ways. This gives

users more choices to pick explanations that work best for
them. We think using PyMOO’s [2] algorithms inside DiCE
ML can help create better and more varied counterfactual
explanations.

In this study we integrated DiCEML [1] with PyMOO
[2], a library that specializes in multi-objective optimization.
PyMOO uses algorithms like NSGA-II, MOEA/D to create
explanations that balance different goals, such as making
small, meaningful changes and keeping explanations diverse.
This integration helps generate counterfactual explanations by
balancing multiple objectives, such as accuracy, interpretabil-
ity, and feasibility. These improvements aim to make machine
learning models more transparent and usable.

This paper describes how we modified DiCEML to work
with PyMOO, the steps we followed, and the results we
achieved. It also highlights how multi-objective optimization
can produce a set of diverse, Pareto-optimal counterfactuals,
allowing users to choose explanations that best suit their needs.

The rest of the paper is organized as follows: Section II re-
views related work and discusses the strengths and weaknesses
of current methods for generating counterfactuals. Section III
explains how we combined DiCEML with PyMOO, including
the changes we made. Section IV shares the results of our
experiments. Section V and VI talks about the challenges we
faced and future plans. Finally, Section VII summarizes what
we learned from this study.

II. LITERATURE REVIEW

Counterfactual explanations are a powerful tool to explain
predictions made by machine learning models. The paper [1]
addresses the need for explainability in machine learning by
introducing diverse counterfactual explanations. It focuses on
generating explanations that allow users to understand model
behavior through what-if scenarios, emphasizing diversity in
the explanations provided. The authors propose a framework
that generates multiple counterfactual instances by looking
at four main factors Diversity, Proximity, Sparsity and last
but not the least User defined constraints on features. The
authors used three main strategies to sample counterfactuals,
which are Random Sampling, Genetic Algorithm and KdTree.
As Evaluation metrics the authors used Validity, Proximity,
Sparsity and Diversity.



Here we dive deep into the DiCE library. The DiCE library
helps generate ”what-if” examples, which are called counter-
factuals. Counterfactuals answer questions like:

Given that the model’s output for input x is y, what changes
to x would result in a desired output y∗?

For example, if x is the input, f(x) is the model’s output, and
y∗ is the desired output, we solve:

Find x∗ such that f(x∗) = y∗, with ∥x− x∗∥ minimized.
(1)

This means we aim to find a new input x∗ that changes
the output to y∗ while keeping changes to x as small as
possible. Counterfactuals should also be diverse and realistic.
For instance, unrealistic changes (e.g., reducing a personś age
from 30 to 20) are less useful. DiCE allows setting limits
for features using the permitted range parameter to ensure
feasibility.

Counterfactuals also explain necessity and sufficiency. A
feature value xi is necessary for the output y if changing xi

changes y, while keeping all other features fixed. Mathemati-
cally:

If f(x) ̸= f(x¬i), where x¬i is x with xi changed. (2)

A feature value xi is sufficient if y cannot change when xi

is fixed. DiCE uses the features_to_vary parameter to
test these conditions.

DiCE generates counterfactuals using two methods:

• Model-Agnostic Methods: These work for any ML
model, including black-box models. They sample points
near x and optimize for proximity, diversity, and feasi-
bility. Examples include:

– Randomized Search
– Genetic Search
– KD Tree Search

• Gradient-Based Methods: These require differentiable
models (e.g., neural networks). They use gradient descent
to minimize a loss function that considers proximity and
diversity.

For feature importance, counterfactuals identify which fea-
tures change most often to achieve a desired output. This
local importance can be averaged across samples to find global
importance. Compared to methods like LIME [4] or SHAP [5],
DiCE often highlights a broader range of important features.

Another related paper [2] is about a Python library for solv-
ing multi-objective optimization problems. It provides tools for
evolutionary algorithms, which are key for problems where
multiple objectives need to be balanced. The paper explains
the functionality of pymoo, detailing the implementation of
evolutionary algorithms like NSGA − II and MOEA/D.
It highlights the library’s flexibility in allowing users to
customize objectives, constraints, modular implementation and
distributed computation. PyMoo provides tools for solving

problems with multiple conflicting objectives. PyMOO defines
a general optimization problem as:

Minimize fm(x), m = 1, . . . ,M,

Subject to gj(x) ≤ 0, j = 1, . . . , J,

hk(x) = 0, k = 1, . . . ,K,

xL
i ≤ xi ≤ xU

i , i = 1, . . . , N,

where fm(x) are the objective functions, gj(x) and hk(x)
are inequality and equality constraints, and xL

i , x
U
i are variable

bounds. PyMOO also supports customization of algorithms
through operators like sampling, crossover, and mutation.
For example, crossover combines parent solutions to produce
offspring, while mutation introduces diversity.

The authors of paper [3] merges counterfactual explainabil-
ity with multi-objective optimization, focusing on generating
explanations that satisfy multiple criteria simultaneously, such
as interpretability, proximity, and feasibility. They made their
framework model-agnostic and handles classification, regres-
sion and mixed feature spaces. To generate diverse and inter-
pretable counterfactual explanations, the authors formalized
the problem as the goal to find a counterfactual x′ for a given
instance x∗ such that the prediction f(x′) is close to a desired
outcome Y ′, while balancing proximity to x∗, sparsity, and
plausibility. This can be expressed as:

min
x′

o(x′) =
(
o1(f(x

′), Y ′), o2(x
′, x∗), o3(x

′, x∗), o4(x
′, Xobs)

)
,

(3)
The primary metrics they used for objectives are O1 (Dis-

tance between Prediction and Actual Label), O2 (Distance be-
tween Acual Input and Counterfactuals using Gower distance),
O3 (How many features have been changed), O4 (Weighted
average Gower distance between actual input and the k nearest
observed data points).

III. METHODOLOGY

To integrate Pymoo with DiCE we need to understand the
internal workings of both the softwares. In the following
subsections, we have described our proposed approach for
integrating the system, the modifications made in the source
codes, and the tools used to accomplish this process.

A. Proposed Approach

1) Modifying the DiCE ML Framework: To incorporate
PyMoo’s algorithms as a new sampling strategy in DiCE, we
adapted the DiCE ML framework as follows:

• Extending the ExplainerBase Class: The
ExplainerBase class in DiCE defines essential
structures and methods required for generating
counterfactuals. To integrate PyMoo, we created a
custom subclass that extends the ExplainerBase
class, allowing us to implement PyMoo as an additional
sampling strategy.

• Implementing Abstract Methods: Key methods
in the ExplainerBase class, particularly
_generate_counterfactuals(), are



designed to define the generation process of
counterfactual examples. We will override the
_generate_counterfactuals() method in our
custom subclass, integrating PyMoo’s multi-objective
optimization algorithms to generate counterfactuals
based on various objectives, such as proximity, sparsity,
and diversity.

2) Integrating PyMoo as a Counterfactual Sampling Strat-
egy: DiCE ML currently supports three sampling strategies,
including Random Sampling, Genetic Algorithm, and KdTree.
We need to add Pymoo as a new sampling strategy inside DiCE
as described in figure 1. The following modifications need
to be made to incorporate PyMoo as an additional sampling
option:

• Adding PyMoo to Sampling Strategies: PyMoo will be
integrated to expand DiCE’s capabilities, allowing ac-
cess to optimization algorithms such as NSGA-II and
MOEA/D, which are effective for multi-objective op-
timization. These algorithms enable the generation of
counterfactual that consider multiple criteria, balancing
trade-offs for explanations that meet diverse user needs.

• Setting Up PyMoo Algorithms: Specific PyMoo algo-
rithms will be selected based on their ability to balance
objectives. Initially, we will only use NSGA-II.

3) Generating and Evaluating Counterfactual Explana-
tions:

• Generation Process: Counterfactuals will be generated
using the customized DiCE class with PyMoo algorithms,
leveraging multi-objective optimization to create explana-
tions that prioritize proximity, sparsity, and diversity. We
can use the already implemented functions of DiCE to
generate the probability and loss functions.

• Evaluation: The generated counterfactuals will be eval-
uated on the obejctives we would define in the pymoo
class. Comparative analysis with existing DiCE sampling
strategies (Genetic Algorithm, Random) needs to be done
to compare the performance.

Fig. 1. Integrating Pymoo with DiCEML

B. Modifying the source codes

1) DiCEML: DiCE is a software built on Python that
can generate diverse counterfactuals. It is a model ag-
nostic architecture and you can put any models inside
to generate your counterfactuals. You need to call the
Dice(data,model,method = random) function and pass in
your data and model.

In this function, we see how you can call the DiCE
functions with a pre-defined model and how you can fix your
method to be used for generating counterfactuals. Here, the
random method has been chosen. There are other methods
like GeneticAlgorithm and KD−Tree that you can choose
as your method.

Inside the source code, there are some important functions
that we need to understand if we want to integrate a new
system.

• decide implementation type function: Configures
which implementation method to use.

• generate counterfactuals function: Generates the
counterfactuals based on the query instances. This is an
abstract method that has to be implemented by any new
methods.

• compute loss function: Generates the loss function
based on y loss, sparsity loss and proximity loss

To integrate a new method like Pymoo, we have to modify
these functions.

2) Pymoo: Pymoo has multiple classes and functions. But
for our project, we have to understand two main classes.

• problem class: This class defines the problem and
evaluate function. You can define your single or mul-
tiobjective optimization problem using this class.

• algorithms class: This class has all the algorithms that
Pymoo has implemented for solving any multiobjective
problems. You can use any of these algorithms to solve
the problem that you define under the problemclass

C. Integrating the Systems

For integrating the systems, we first need to generate coun-
terfactuals using Pymoo. Then we can integrate that function
inside DiCEML source code so that we can directly use
the Pymoo solution from the DiCE itself. For generating a
counterfactual function using Pymoo, we have to define a
multiobjective function inside the evaluate function. For
simplicity, we have used two objectives for generating counter-
factuals: Minimizing proximity and maximizing diversity. Fig-
ure 2 depicts the code snippet of this counterfactual function.
We have used RandomForestRegressor as the machine
learning model and CaligorniaHousingDataset for this
experiment.

Fig. 2. Counterfactual generation using Pymoo



Then we have used the NSGA−II algorithm from Pymoo
to solve this counterfactual problem and get the counterfactu-
als. Figure 3 shows the generated counterfactuals from this. It
is hard to interpret. So, we plan to see if we can use DiCE’s
visualization functions with this result.

Fig. 3. Generated counterfactuals from Pymoo

We have used the visualization function from DiCE, figure
4, and put the generated counterfactuals from the Pymoo
model into it. Figure 5 shows the outputs from this procedure.
From these results, we can conclude that the outputs are
not consistent. Some of the features suggest some unrealistic
results, like having 32 bedrooms in a house. This inconsistency
could be due to the overly simplistic algorithm we have used
to generate the counterfactuals.

Fig. 4. Visualizing the counterfactuals from Pymoo using DiCE

Fig. 5. Visualizing the counterfactuals from Pymoo using DiCE

Till this point, we did not put the Pymoo codes inside the
DiCE source code. In the next steps, we gradually changed
the source code of DiCE to integrate this Pymoo algorithm for
generating counterfactuals. We mainly changed the following
3 functions:

• Defined a new sampling method type as Pymoo in
constants.py file. The screenshot of a sample code is
given at figure 6

• Created and implemented the DicePymoo class that
extends the ExplainerBase class. Started implementing
the generate counterfactual function.

• Built the Pymoo class to generate the optimization
function. We have created total 4 objective functions for
the optimization. These are: probability, proximity loss,
sparsity loss, and diversity loss. Algorithm 1 provides a
pseudo code of the optimization function that we have
defined.

Fig. 6. New sampling method inside DiCE

Fig. 7. The Pymoo class to generate the Optimization

• Inside the DicePymoo class, we resampled and mod-
ified some of the input dimension so that it can
fit with the Pymoo algorithm shape. Then, we
added another parameter, pymoo algorithm, in the
generate counterfactual function. This helps us to

chose which Pymoo algorithm to use for building the
counterfactuals. Figure 8 showcases a snapshot of this.

Fig. 8. Selecting the Pymoo algorithms

• Added this new method inside the dice.py file so that it
can be callable from the Dice function. Figure 9 shows
a sample screenshot of the calling method.

D. Tools and Environment Setup

To implement the project, we utilized Python and several
Python libraries:

• Language: Python was chosen for its extensive support
of machine learning and optimization libraries.



Fig. 9. Calling the Pymoo method

Input : Data X , parameters, and configurations
Output: Updated out with computed objectives and

losses
/* Step 1: Prediction Objective */
Compute prediction objectives based on model type

and desired class.
/* Step 2: Diversity Objective */
Cluster the data, compute inter-cluster distances, and

calculate diversity loss.
/* Step 3: Loss Calculation */
Normalize data, compute total loss based on sparsity

and proximity metrics.
/* Step 4: Update Output */
Combine prediction, total loss, and diversity loss into

the output structure.

Algorithm 1: Pseudo code for the evaluation function of
the Pymoo optimization functions

• Libraries:
– DiCE ML: DiCE (Diverse Counterfactual Explana-

tions) is used to generate counterfactual explanations
and provides a flexible framework for integrating
custom sampling strategies.

– PyMoo: This library offers a suite of multi-objective
optimization algorithms, enhancing the counterfac-
tual sampling process.

– Numpy and Pandas: Used for efficient numerical
and data manipulation operations.

– sklearn: Used for calculating different calculations
to make the optimization functions work

IV. RESULTS

For comparing the results, we have formulated some cases.
In the following sections, we will discuss the results and com-
pare them with the regular DiCE generated counterfactuals.

A. Base Case: Generating 1 counterfactual keeping default
setting

First of all, we would like to generate the most default
setting, with only one counterfactual and keeping all other pa-
rameters default. We have used the built in adults dataset for
this. For training the model, the RandomForestClassifier
model has been used. The data has been preprocessed at
first and the continuous and the categorical values have been
separated for the models understanding.

• Original Output: The original output is regular diverse
counterfactual output. We have used the genetic method
for generating this. Figure 10 demonstrates the output
from the original method.

Fig. 10. Generate 1 Counterfactual with Regular GA of DiCE

• Pymoo Output: The Pymoo output is also a very regular
diverse counterfactual output. We have used the NSGA2
algorithm of Pymoo for generating this. Figure 11 demon-
strates the output from the Pymoo method.

Fig. 11. Generate 1 Counterfactual with NSGA2 of Pymoo

Fig. 12. Generate 1 Counterfactual with NSGA3 of Pymoo

Fig. 13. Generate 1 Counterfactual with AGEMOEA of Pymoo

Figures 12, 13, and 14 demonstrate the outputs from other
algorithms of Pymoo also. Overall, for the base case, the
primary algorithms of Pymo work really well.

B. Diversity Property: Generating 5 counterfactuals keeping
default setting

Next, we tested the most diversity setting, by generating 5
counterfactuals while keeping all other parameters default. We
have used the same dataset and model here also.

• Original Output: The original output is regular diverse
counterfactual output. The outputs are good and diverse.
We have used the random method for generating this.
Figure 15 demonstrates the output from the original
method.

• Pymoo Output: The Pymoo output at first was not very
good. We were using the regular diversification functions.
But after we used the cluster based diversification, the



Fig. 14. Generate 1 Counterfactual with AGEMOEA2 of Pymoo

Fig. 15. Generate 5 Counterfactuals with Random method of DiCE

output improved a lot. We have used the NSGA2 algo-
rithm of Pymoo for generating this. Figure 16 demon-
strates the output without the diversity loss. And 17
showcases the outputs after the diversity improvement.
You can see that the generated counterfactuals are now
more diverse.

Fig. 16. Generate 5 Counterfactuals with NSGA2 of Pymoo without the
diversity loss

Fig. 17. Generate 5 Counterfactuals with NSGA2 of Pymoo with the updated
diversity loss

Figures 18, and 19 demonstrate the outputs from other
algorithms of Pymoo also. Overall, for this case, the
primary algorithms of Pymoo work really well after the
diversity function improvement .

C. Restraining Features: Fixing which features to vary and
fixing the range of desired values

Next, we tested by generating 2 counterfactuals while
keeping some features to default and some feature values in a

Fig. 18. Generate 5 Counterfactuals with NSGA3 of Pymoo

Fig. 19. Generate 5 Counterfactuals with AGEMOEA of Pymoo

certain range. We have used the same dataset and model here
also.

• Original Output: The original output is regular diverse
counterfactual output with the ages between 20 to 25 for
the figure 20. Figure 21 demonstrates the output where
the features education and occupation are allowed to vary.
We have used the genetic method for generating this.

Fig. 20. Generate Counterfactuals with Age and occupation fixed to a range

Fig. 21. Generate Counterfactuals with Education and Occupation varying

• Pymoo Output: For Pymoo, we also did the same thing.
We varied the features Education and Occupation only.
And the age range was given as 20 − 25 and the
occupation range was Doctorate and Prof − school.

Figures 22, and 23 demonstrate the outputs for this
cases. For the desiredrange case, the desired range is
currently only being achieved for continuous values. For
categorical values, it is not giving the exact output that
we are expecting.



Fig. 22. Generate Counterfactuals with NSGA2 of Pymoo with Education
and Occupation varying

Fig. 23. Generate Counterfactuals with NSGA2 of Pymoo with Age and
occupation fixed to a range

D. Test cases with other dataset

We have also tested with another dataset called the Titanic
dataset [6]. The results from this dataset is also promising. We
also ran the same 3 scenarios that we have discussed earlier.
The sample outputs are given in figures 24, 25 and 26.

Fig. 24. Generate Counterfactuals with all features in Titanic Data

Fig. 25. Generate Counterfactuals with some features allowed to vary in
Titanic Data

Overall, we can say that the integrated Pymoo functions
are performing well for the base cases and also when we
vary some of the parameters. When we compare it with the
random method, the outputs from Pymoo are sometimes even
better. When compared with the genetic method, the outputs
are quite comparable.

Fig. 26. Generate Counterfactuals with some features fixed to a range in
Titanic Data

V. CHALLENGES AND RISKS

There are some challenges we have faced in integrating
these two systems. Such as:

• The source code of DiCE is complex. We tested the
important and most used features of DiCE. But there
are many other features like feature importance, deep
learning models etc. that we could not test due to time
shortage.

• The desired range feature is working currently only for
the continuous features. For categorical features, some
other encoding needs to be implemented.

• Some of the algorithm of Pymoo like C-TAEA couldn’t
be tested as it was taking too much time for each iteration.

VI. FUTURE WORKS

For our upcoming plans, we plan to finish up the following
items:

• We plan to test out other data and models with the Pymoo
implementation.

• In future we would like to fix the the desired range
feature for categorical features also.

• We plan to test out the remaining pymoo algorithms and
if specific modification is needed for them.

• We plan to build a usable library from this which can
seamlessly work and generate counterfactuals.

VII. CONCLUSION

In this study, we successfully integrated PyMOO with
DiCEML to improve the generation of counterfactual expla-
nations. PyMOO’s algorithms helped us balance multiple ob-
jectives such as proximity, sparsity, and diversity. Our results
show that this integration improves the quality of counterfac-
tual explanations and makes counterfactuals more meaningful
and diverse. Some challenges still remain, such as handling of
categorical features and testing additional algorithms and also
testing on complex machine learning models like deep neural
networks. In the future, we plan to improve our methods and
test more datasets to create a more diverse and robust solution.
Our work takes a step toward making machine learning models
easier to explain and trust.
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